Skip to main content

Can We Deflect Asteroids?

 

 Will an asteroid hurtling through space some day crash into Earth and cause massive damage? The odds are small, but they’re real. Deflecting an incoming asteroid might seem like the stuff of science fiction, but scientists say it can bedone—if the asteroid is detected in time. Given enough prior knowledge, former U.S. astronaut Ed Lu says, governments could launch one or more spacecraft into the threatening asteroid and change its path enough so that it would miss Earth. These “kinetic impactors,” Lu says, could even divert an asteroid the size of the one that brought down the dinosaurs. Lu is one of the co-founders of the B612 Foundation, a non-profit organization that monitors asteroids and other Near Earth Objects (NEO) and studies how to protect Earth from them. Its goal is to fund the building and launch of a space telescope named Sentinel. The telescope, scheduled for launch in 2018, will map all the asteroids around Earth. Realizing the threat of an asteroid collision is real, in 2013 the United Nations called for the creation of the International Asteroid Warning Network. The goal is to bring together scientific organizations and nations with active space programs so they can share knowledge about the asteroid threat.


Comments

Popular posts from this blog

How Will the Universe End?

    In 1929, Edwin Hubble discovered that the universe is not in fact static, but expanding. In the years following his discovery, cosmologists took up the implications of the discovery, asking how long the universe had been expanding, what forces caused the expansion, and whether it will ever cease.    Cosmologists are pretty confident about the first question: just shy of 14 billion years. A great deal of evidence supports the predominant answer to the second question: The universe rapidly emerged from a singularity in an event that cosmologists call the Big Bang. The third question is a bit more mysterious, and the answer relies on an obscure, confounding phenomenon known as dark energy. The density of dark energy in the universe determines its ultimate fate. In one scenario, the universe does not possess enough dark energy to forever counteract its own gravity and thus ends in a “Big Crunch.” Under this scenario, the universe’s gravity will overcome its expansio...

What Causes Volcanic Lightning?

      On March 10, 2010, Eyjafjallajökull volcano, a caldera in Iceland covered by an ice cap, erupted. It sent plumes of clouds across most of Europe and the Atlantic Ocean. Photos of the eruption show lightning originating and ending in the cloud of ash that hovered over the volcanic opening.    The largest volcanic storms are similar to supercell thunderstorms that spread across the American Midwest. But while those thunderstorms are fairly well understood, volcanic lightning still remains mysterious. The remote location of volcanoes and infrequent eruptions make volcanic lightning difficult to study. In general, lightning occurs through the separation of positively and negatively charged particles. Differences in the aerodynamics of the particles separate the positive and negative. When the difference in charge is great, electrons flow between the positive and negative regions. A lightning bolt is a natural way of correcting the charge distributi...

Why Do We Have Fingerprints?

      Many  scientists once thought fingerprints help us hold onto objects. From an evolutionary perspective, getting a better grip on tools or weapons would have made life easier for early humans. In 2009, Dr. Roland Ennos of Manchester University designed an experiment that tested the gripping power of our fingerprints. He used a machine equipped with weights to pull strips of Perspex, a kind of acrylic, across a subject’s fingertips. The machine measured the amount of friction created as the acrylic passed over the tip. In the real world, a high amount of friction between two solid objects in contact with each other would indicate a better grip. In the experiment, the fingertips created some friction on the acrylic, but not as much as Ennos had expected.     Ennos compares our fingerprints to the tires on a race car. Ridges in the tire reduce the surface area of the tire in contact with the road, which reduces friction. The ridges on fingertips have the ...