Skip to main content

How Much of the HumanBody Is Replaceable?

   



   Fan of the old TV shows and saws cientists revive nearly dead humanb eings, bringing them back to lifew it high-tech body parts that gavet hem extraordinary capabilities.

    Today, replacing parts of the human body using state-of-the-art technology is moving out of the
realm of science fiction and into reality.
      
    Replacement of body parts means
transplanting organs and tissues from one
person to another or using artificial body
parts. Organs currently transplanted are the heart, kidneys, liver, lungs, pancreas, and intestines. Tissues and cells include the corneas, cartilage, muscles, tendons, ligaments, skin, and heart valves
(mechanical versions of the valves are also used).
   
    Artificial limbs and organs can replace parts throughout the body. Doctors commonly replace knees and hips, along with finger, elbow, and shoulder joints. Cochlear implants are electronic devices that restore hearing, and researchers are
currently testing a new brain implant that can help patients who lack functioning auditory nerves. Prosthetic noses, hands,  arms, and legs are available; artificial legs are among the most sophisticated prosthetics today, and researchers continue to improve “bionic” hands with an almost human sense of touch. One, the bebionic3, has 14 different grip patterns, including  ones that allow users to pick up a coin or write with a pen.
   
     The science of developing artificial body parts is constantly changing. In 2014, hospitals across the United States tested a “bioartificial” liver that combines liver cells and a mechanical device that together perform liver functions outside the body while a patient’s diseased liver regenerates healthy tissue. Researchers in Japan and elsewhere are developing 3-D printers that combine stem cells and artificial materials to custom-make artificial ears. The Japanese team hopes to also create skin and bones using this method.
    
    Scientists are also working to grow real replacement parts in the lab. Doris Taylor of the Texas Heart Institute is one of the pioneers in using stem cells to create such body parts as hearts, livers, and kidneys for transplants. Taylor says, “I absolutely see a day where you’ll walk into a manufacturing facility somewhere, and there will be jars of kidneys, jars of livers, and jars of lungs, whatever it is you need.”

Comments

Popular posts from this blog

How Will the Universe End?

    In 1929, Edwin Hubble discovered that the universe is not in fact static, but expanding. In the years following his discovery, cosmologists took up the implications of the discovery, asking how long the universe had been expanding, what forces caused the expansion, and whether it will ever cease.    Cosmologists are pretty confident about the first question: just shy of 14 billion years. A great deal of evidence supports the predominant answer to the second question: The universe rapidly emerged from a singularity in an event that cosmologists call the Big Bang. The third question is a bit more mysterious, and the answer relies on an obscure, confounding phenomenon known as dark energy. The density of dark energy in the universe determines its ultimate fate. In one scenario, the universe does not possess enough dark energy to forever counteract its own gravity and thus ends in a “Big Crunch.” Under this scenario, the universe’s gravity will overcome its expansio...

What Causes Volcanic Lightning?

      On March 10, 2010, Eyjafjallajökull volcano, a caldera in Iceland covered by an ice cap, erupted. It sent plumes of clouds across most of Europe and the Atlantic Ocean. Photos of the eruption show lightning originating and ending in the cloud of ash that hovered over the volcanic opening.    The largest volcanic storms are similar to supercell thunderstorms that spread across the American Midwest. But while those thunderstorms are fairly well understood, volcanic lightning still remains mysterious. The remote location of volcanoes and infrequent eruptions make volcanic lightning difficult to study. In general, lightning occurs through the separation of positively and negatively charged particles. Differences in the aerodynamics of the particles separate the positive and negative. When the difference in charge is great, electrons flow between the positive and negative regions. A lightning bolt is a natural way of correcting the charge distributi...

Why Do We Have Fingerprints?

      Many  scientists once thought fingerprints help us hold onto objects. From an evolutionary perspective, getting a better grip on tools or weapons would have made life easier for early humans. In 2009, Dr. Roland Ennos of Manchester University designed an experiment that tested the gripping power of our fingerprints. He used a machine equipped with weights to pull strips of Perspex, a kind of acrylic, across a subject’s fingertips. The machine measured the amount of friction created as the acrylic passed over the tip. In the real world, a high amount of friction between two solid objects in contact with each other would indicate a better grip. In the experiment, the fingertips created some friction on the acrylic, but not as much as Ennos had expected.     Ennos compares our fingerprints to the tires on a race car. Ridges in the tire reduce the surface area of the tire in contact with the road, which reduces friction. The ridges on fingertips have the ...